Compartmentalized nodes control mitotic entry signaling in fission yeast
نویسندگان
چکیده
Cell cycle progression is coupled to cell growth, but the mechanisms that generate growth-dependent cell cycle progression remain unclear. Fission yeast cells enter into mitosis at a defined size due to the conserved cell cycle kinases Cdr1 and Cdr2, which localize to a set of cortical nodes in the cell middle. Cdr2 is regulated by the cell polarity kinase Pom1, suggesting that interactions between cell polarity proteins and the Cdr1-Cdr2 module might underlie the coordination of cell growth and division. To identify the molecular connections between Cdr1/2 and cell polarity, we performed a comprehensive pairwise yeast two-hybrid screen. From the resulting interaction network, we found that the protein Skb1 interacted with both Cdr1 and the Cdr1 inhibitory target Wee1. Skb1 inhibited mitotic entry through negative regulation of Cdr1 and localized to both the cytoplasm and a novel set of cortical nodes. Skb1 nodes were distinct structures from Cdr1/2 nodes, and artificial targeting of Skb1 to Cdr1/2 nodes delayed entry into mitosis. We propose that the formation of distinct node structures in the cell cortex controls signaling pathways to link cell growth and division.
منابع مشابه
Megadalton-node assembly by binding of Skb1 to the membrane anchor Slf1
The plasma membrane contains both dynamic and static microdomains. Given the growing appreciation of cortical microdomains in cell biology, it is important to determine the organizational principles that underlie assembly of compartmentalized structures at the plasma membrane. The fission yeast plasma membrane is highly compartmentalized by distinct sets of cortical nodes, which control signali...
متن کاملHuman homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G2.
Entry into mitosis during the somatic cell cycle is regulated in response to signals that monitor the completion of DNA replication, the integrity of the nuclear genome, and, possibly, the increase in cellular mass during the cell cycle. It has been postulated that the operation of this cell cycle control involves the gradual accumulation of rate-limiting mitotic inducers, which trigger nuclear...
متن کاملDueling Kinases Regulate Cell Size at Division through the SAD Kinase Cdr2
Cell size control requires mechanisms that integrate cell growth and division. Key to this integration in fission yeast is the SAD family kinase Cdr2, which organizes a set of cortical nodes in the cell middle to promote mitotic entry through Wee1 and Cdk1. Cdr2 is inhibited by a spatial gradient of the DYRK kinase Pom1 emanating from cell tips in a cell-size-dependent manner, but how the Pom1 ...
متن کاملFission Yeast Nod1 Is a Component of Cortical Nodes Involved in Cell Size Control and Division Site Placement
Most cells enter mitosis once they have reached a defined size. In the fission yeast Schizosaccharomyces pombe, mitotic entry is orchestrated by a geometry-sensing mechanism that involves the Cdk1/Cdc2-inhibiting Wee1 kinase. The factors upstream of Wee1 gather together in interphase to form a characteristic medial and cortical belt of nodes. Nodes are also considered to be precursors of the cy...
متن کاملDrosophila Wee1 Kinase Regulates Cdk1 and Mitotic Entry during Embryogenesis
Cyclin-dependent kinases (Cdks) are the central regulators of the cell division cycle. Inhibitors of Cdks ensure proper coordination of cell cycle events and help regulate cell proliferation in the context of tissues and organs. Wee1 homologs phosphorylate a conserved tyrosine to inhibit the mitotic cyclin-dependent kinase Cdk1. Loss of Wee1 function in fission or budding yeast causes premature...
متن کامل